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Abstract  Keywords 

The purpose of this study is to address the ways in which 

mathematically gifted students reason when faced with both 

confirming and contradicting examples for a mathematical 

statement. By addressing this issue, this study aims to investigate 

the types of examples, generalizations and justifications that 

students construct after confronting confirming and contradicting 

examples for the statements. Eight students who enrolled in a 

Science and Art Center volunteered to participate in a semi-

structured individual interview. The results indicated that the 

types and the purposes of suggested examples varied among the 

students. Research investigating student reasoning suggests that 

students’ justification schemes reflect their current view of the 

collection of examples that are considered as sufficient for the 

validation of a mathematical generalization. This study revealed 

that the types of examples were informative regarding the types of 

generalizations and arguments that were constructed by the 

students. 
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Introduction 

The importance of constructing valid arguments and critiquing the reasoning of others has been 

emphasized as an essential component for mathematics education from kindergarten through high 

school (Common Core State Standards for Mathematics [CCSSM], 2010; National Council of Teachers 

of Mathematics [NCTM], 2000). Mathematics educators have supported the incorporation of reasoning 

and proving as essential components of mathematics education at all grade levels by demonstrating 

that early elementary students can engage in such activities successfully (Komatsu, 2010; Stylianides & 

Ball, 2008). The many calls to make reasoning and proving central to students’ daily mathematical 

practices at all levels (CCSSM, 2010; NCTM, 2000) could explain the increasing studies focusing on these 

skills. Although many studies focus on students’ ability to construct viable arguments and/or evaluate 

others’ arguments, there are comparatively fewer studies that focus on students’ processes for refuting 

invalid statements and critiquing the reasoning applied in invalid statements (Yopp, 2015; Yopp, Ely, 

Adams, Nielsen, & Corwine, 2020; Zeybek Şimşek, 2021). Critiquing the reasoning applied in an invalid 

mathematical claim is an intellectually demanding task (Giannakoulias, Mastorides, Potari, & 
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Zachariades, 2010; Zeybek Şimşek, 2021) and is influenced by knowledge of argumentation, the 

mathematics register, and methods for handling conceptual insights (Yopp, 2015; Yopp et al., 2020). 

Studies demonstrate that students as well as teachers provide various responses to invalid 

generalizations (e.g., Balacheff, 1991; Giannakoulias et al., 2010; Yopp, 2015; Zeybek Şimşek, 2021). For 

instance, Balacheff (1991) has reported that once a student encounters a counterexample, his/ her actions 

could vary from modifying the original conjecture’s condition (or the definition) to simply ignoring the 

counterexample as not sufficient. Similarly, Yopp (2015) has documented imprudent claims developed 

by pre-service teachers after a counterexample was identified. All these findings may indeed be related 

to the idea of cognitive conflict and how students handle cognitive conflict once they encounter a 

counterexample. As many researchers, we believe that learning occurs through cognitive conflict when 

students encounter new information that contradicts with previously formed mental structure which 

results in either changing existing mental structure or developing a new one (Gal, 2019; Piaget, 1975; 

Zaskis & Chernoff, 2008). Thus, cognitive conflict created by encountering a counterexample might 

serve as an essential mechanism to feed intellectual curiosity as well as reasoning skills of learners. For 

instance, Stylianides and Stylianides (2022) nominate purposefully selecting instructional tasks to 

promote cognitive conflict to foster students’ intellectual curiosity which constitutes an essential step 

for developing reasoning and proving skills. However, Gal (2019) argues that not all students are ready 

to deal with cognitive conflict and difficulties with logical thinking ability might hinder students from 

dealing with such conflicts.  

Some researchers see further exploration of false mathematical statements as an opportunity to 

investigate learners’ logical thinking ability while others hold different perspectives. For instance, 

Komatsu (2010) has documented that fifth graders could deal with cognitive conflict once they 

encounter a counterexample and could attain genuine mathematical processes with refutations. Yopp 

(2015), on the other hand, mentions the limitations of such activities by stating “attempts to go beyond 

the existence of a counterexample, including making claims about classes of counterexamples and 

claims about cases that confirm to the original claim, can lead to problematic responses when a 

counterexample would have sufficed” (p. 79). Although the attempts that go beyond suggesting a 

counterexample could lead to problematic responses, we believe that such attempts are akin to genuine 

mathematical processes and therefore, could be essential to better conceptualize students’ mathematical 

reasoning processes.  

This paper suggests that mathematical statements that allow for the construction of both 

confirming and contradicting examples can cause cognitive conflict and initiate attempts to go beyond 

the identification of counterexamples. Given the substantial body of research indicating that 

mathematically gifted students differ from their peers in their ability to generalize and their desire to 

identify patterns and relationships (Leikin, 2021; Sriraman, 2004), it proposes that gifted students can 

vary in their approaches once both confirmations and contradictions are identified. That is, 

mathematically gifted students might demonstrate various strategies, including constructing 

generalizations and arguments that go beyond suggesting a counterexample. Thus, this paper explores 

the following research questions: 

1. When faced with mathematical statements for which both confirming and contradicting 

examples could be found, what types of reasoning do mathematically gifted students use? 

a. What types of examples do they construct? 

b. What types of generalizations do they recognize? 

c. What types of arguments do they construct to justify their generalizations? 

2.  What are the relationships between the examples that the gifted students suggested and the 

generalizations and the arguments that they constructed? 
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Theoretical Background 

Examples 

Recent studies have highlighted the importance of studying examples (e.g., Alcock, 2004; 

Alcock & Weber, 2010; Ellis et al., 2019). More specifically, these studies focus on the different roles and 

usages of examples for the processes of justifying, generalizing, and proving (e.g., Ellis et al., 2019). 

Examples are an essential approach for students to make sense of conjectures (Alcock, 2004), support 

generalizing acts (Goldenberg & Mason, 2008), and be encouraged to analyze structural relationships, 

which is crucial for proof construction (Goldenberg & Mason, 2008; Pedemonte & Buchbinder, 2011). 

Buchbinder and Zaslavsky (2009) investigate different types of examples with respect to 

determining the truth value of mathematical statements. They classify examples as confirming, non-

confirming, contradicting, or irrelevant and argue that these classifications differed based on whether 

the mathematical statement was universal or existential. Thus, being cognizant about the various types 

of available examples in the process of proving should play a crucial role in mathematical reasoning. 

However, this paper argues that being able to identify the different roles of examples depends on 

students’ referent knowledge and is closely related to their justification schemes. Balacheff (1991) 

echoed a similar theme, stating that “the existence of a referent knowledge (the scientific knowledge or 

the knowledge to be taught) gives the right to decide whether a fact is contradictory or not with respect 

to this knowledge” (p. 2). 

Watson and Mason (2005) argue that examples are not isolated rather they should be perceived 

as instances of a class of potential examples, which they referred as example spaces (p. 51). Stylianides 

and Stylianides (2009) conceptualize a link between learners’ example spaces and the notion of 

justification schemes, which they referred as example spaces for validation. They have presented major 

justification schemes proposed by Harel and Sowder (1998) and corresponding example spaces for 

validation in increasing levels of mathematical sophistication (see Stylianides & Stylianides, 2009 for 

further details). Stylianides and Stylianides (2009) state: “A student's justification scheme reflects his or 

her current view of the collection of examples that are considered as sufficient for the validation of a 

mathematical generalization, that is, it reflects the student's personal example space for validation” (p. 

320). If students’ justification schemes reflect their example space, then the examples constructed by 

students should also be informative regarding the students’ justification schemes and their referent 

knowledge. As Watson and Mason (2005) view examples as “illustrations of concepts and principles” 

(p. 3), learner generated examples are seen as illustrations of their justification schemes in this study. 

The example spaces corresponding to justification schemes proposed by Stylianides and Stylianides 

(2009) are adopted to analyze students’ proposed examples in this study (see Table 1). 

Table 1. Example Types and Example Spaces Corresponding to Justification Schemes 

Confirming Examples Contradicting Examples 

Naive Empirical 

Example 

Crucial 

Experiment 

Example 

Conventional 

Example 

Naive 

Empirical 

Example  

Crucial 

Experiment 

Example 

Conventional 

Example  

Students 

consider a few 

confirming 

examples that 

are convenient 

to check or 

randomly 

chosen.  

Students 

consider 

confirming 

examples that 

are selected 

based on some 

kind of 

strategy.  

Students 

consider all 

confirming 

examples in 

the domain of 

a mathematical 

statement.  

Students 

consider a few 

contradicting 

examples that 

are convenient 

to check or 

randomly 

chosen. 

Students 

consider 

contradicting 

examples that 

are selected 

based on some 

kind of 

strategy. 

Students 

consider all 

contradicting 

examples in 

the domain of 

a mathematical 

statement. 
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Generalizations 

Mason, Burton and Stacey (2010) define the process of generalizing as “moving from a few 

instances to making guesses about a wide class of cases” (p. 8). Dörfler (1991) uses generalization as 

both “an object and a means of thinking and communicating” (p. 63). There is no doubt that the process 

of generalizing is a crucial component of mathematical learning and should be at the center of 

mathematics classrooms at all levels (Blanton, Levi, Crites, & Dougherty, 2011; Mason, Burton, & Stacey, 

2010). Yet, studies investigating the processes of students' generalizing often report their difficulties in 

recognizing, employing, and constructing general statements (English & Warren, 1995). Although what 

type of knowledge counts as general may differ among students or mathematicians, to capture a 

mathematical relation from a given set or a common element across cases and to transport it to a new 

set or adjust an idea to incorporate a larger range of phenomena requires complex way of thinking and 

reasoning (English & Warren, 1995).  

Dörfler (1991) classifies generalizations into two categories: empirical and theoretical. 

According to Dörfler, empirical generalization is based on detecting the common features or qualities 

of objects, which is why it is considered problematic. Theoretical generalization is, in contrast, 

constructed through abstracting the essential qualities such as relations among objects and starts with a 

“system of action” (Dörfler, 1991, p. 71). Harel describes students’ pattern generalization in a similar 

fashion as “result pattern” and “process pattern” generalizations: “in process pattern generalization, 

students focus on regularity in the process, whereas in result pattern generalization, they focus on 

regularity in the result” (2001, p. 11). This paper uses a similar distinction to describe students’ behavior 

when they encounter both confirming and contradicting examples. When the students see the regularity 

in the process and extract this to transform it into more general reasoning, it is categorized a “process 

pattern generalization” in this study. Conversely, when students only observe the regularity in the 

results with no further investigation of the underlying structure, it is called “result pattern 

generalization.” 

Argumentation  

Mathematical reasoning and proof are viewed as an essential component for deep mathematical 

learning (e.g., Harel & Sowder, 1998; NCTM, 2000; Stylianides & Stylianides, 2009). Yet, research 

indicates that students of all levels of education have serious issues with constructing arguments and 

tend to rely on specific examples to determine the validity of mathematical statements (aka empirical 

proof scheme) (e.g., Healy & Hoyles, 2000). Stylianides (2007) states that the main difference between 

invalid mathematical reasoning (empirical reasoning) and valid way of reasoning (deductive reasoning) 

lies in the modes of argumentation. That is, while empirical arguments provide a nonsecure method to 

verify the truth of a mathematical generalization by treating only a proper subset of all the cases, proofs 

provide conclusive evidence by considering all cases covered in the domain of a generalization.  

Harel (1998) refers to the desire for a more secure validation method as an intellectual need. 

Thus, the main question of this study is whether students feel the need to provide conclusive evidence 

for treating all elements in the domain of a generalization. Stylianides and Stylianides (2009) adopt 

justification schemes based on the distinction of whether participating students feel an intellectual need 

for more secure mathematical reasoning by drawing upon the existing related literature (e.g., Balacheff, 

1988; Harel & Sowder, 1998). A similar approach was followed in this study when evaluating the 

arguments constructed by participating students (see Table 2). 
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Table 2. Argument Types and Their Characteristics 

Empirical Argument Non-Empirical Argument Conventional Argument 

Students construct 

arguments based on the 

confirming evidence offered 

by a few cases (Balacheff, 

1988). 

Students recognize empirical 

arguments as insecure methods for 

validating a mathematical 

generalization, but construct 

arguments that deviate from 

mathematical proofs (Stylianides & 

Stylianides, 2009). 

Students recognize the necessity 

of and can construct proofs as a 

secure method for validating a 

mathematical generalization 

(Stylianides & Stylianides, 2009). 

Mathematically Gifted Students  

Researchers have demonstrated that mathematically gifted students show greater patience and 

persistence during problem solving processes compared to their peers (Budak, 2012) and they are more 

inclined to demonstrate intellectual curiosity and creativity during problem solving processes (Hong & 

Aqui, 2004). Given that mathematically gifted students often go beyond just finding an answer to grasp 

for structural relations and search for multiple strategies (Gorodetsky & Klavirb, 2003), the tasks that 

require constructing multiple strategies, generalizations and/or justifications might then better serve to 

their creativity (Berg & McDonald, 2018). Similarly, Leikin (2021) argues that mathematically gifted 

students are more flexible and creative when required to solve problems in multiple ways. Researchers 

also indicate that mathematically gifted students’ ways of thinking and reasoning are similar and 

parallel to those of mathematicians (Leikin, 2021; Sriraman, 2004). That is, mathematicians attempt to 

form an intuition about truth of a mathematical statement by consciously trying to construct examples 

and counterexamples prior to adopting more formal methods of establishing truth (Alcock & Inglis, 

2008; Sriraman, 2004). Thus, it could then be hypothesized that mathematically gifted students also 

show tendency of constructing various types of examples, generalizations as well as justifications to 

form their intuition while verifying mathematical statements. All these characteristics of mathematically 

gifted students constitute the reasons for why they were selected as the participants of this study. 

Methods 

Phenomenography research is a method used in educational studies to depict what students 

perceive from the same concept (Trigwell, 2006). This reveals the diversity in students’ perceptions and 

allows researchers to map them qualitatively (Marton, 1986). This method is a technique widely used in 

educational research to analyze what different individuals understand or how they perceive specific 

concepts (Wihlborg, 2004). Over time, this method has evolved and developed as a tool used in 

educational research to understand why some students learn better than others. This was a 

phenomographic study in that it focused on revealing how students reason or experience cognitive 

conflict, categorizing their reasoning processes by investigating their similarities and differences, and 

revealing the connections between these categories. 

Participants 
Given that the purpose of this study was to delve into the process of reasoning about 

mathematical statements that allow both conforming and contradicting examples, it was hypothesized 

that mathematically gifted students might have more desire and drive to construct, refine, and explore 

mathematical generalizations and arguments. Thus, the participants consisted of eight students enrolled 

at a Science and Art Center in Turkey, where they were selected based on their Wechsler Intelligence 

Test scores. 
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Science and Art Centers are the institutions that provide education at primary and secondary 

levels in Turkey, where the education practices of the gifted are carried out. The Centers were 

established in 1997 with the Decree-Law on Special Education to support gifted students according to 

their abilities in addition to the education they receive in formal primary and secondary schools 

(Ministry of National Education [MoNE], 2022). Students in these centers should be nominated mostly 

by their elementary school teachers to be accepted by these schools. The Centers administer a two-step 

test to candidates before accepting the students. One of the tests is the Total Ability Test and the other 

one is the Wechsler intelligence test (WISC-R). The WISC-R test is an individual intelligence test 

developed to determine the mental performance of individuals (Wechsler, 1975). Students with a score 

of 130 and above according to the WISC-R test are considered as gifted and have the right to register 

with the Centers (Akkanat, 2004).  

The participants of the study were determined using a purposive sampling method. Purposive 

sampling is a technique widely used in qualitative research to obtain information-rich data for the 

effective use of limited resources (Patton, 2002). Since the purpose of the study was mainly to investigate 

students’ reasoning skills, it was necessary to recruit students who could express themselves and were 

unafraid of explaining their thoughts. Therefore, the authors contacted the principals and the 

mathematics teachers of a Science and Art Center in Turkey and informed them about the aims of the 

study. The Center’s mathematics teacher was asked to nominate students whose communication skills 

were suitable for the purpose of the study. Students with both good communication skills and good 

math scores were nominated by their math teachers and volunteered to participate in the study. Murat, 

Kemal, Melike, and Nilay attended eighth grade while Binnur, Ceylin, Demet, and Reyyan (all 

pseudonyms) attended seventh grade during the time this study was conducted. Although the 

participating students were at different grade levels, it should be noted that comparing the reasoning 

skills of the students at different grade levels was beyond the scope of this study. All required 

permissions were obtained from the participating students’ parents. 

Task-Based Interviews 

A semi-structured interview protocol was designed to investigate student reasoning when 

faced with mathematical statements that allowed for the construction of both contradicting and 

confirming examples. 

Do you think it is true or false? Explain your reasoning. 

Mathematical Statement 1: “The sum of three consecutive numbers is always an odd number.” 

Mathematical Statement 2: “If the difference between nominator and denominator is smaller, then the 

fraction is bigger.” 

Mathematical Statement 3: “At least one diagonal of a quadrilateral cuts the quadrilateral in two 

triangles with the same area.” 

Mathematical Statement 4: “If the perimeter of a rectangle then increases its area also increases.” 

Figure 1. The interview tasks 

The interview tasks (Figure 1) included four mathematical statements, which were designed by 

reviewing the existing literature (e.g., Ball, Hoyles, Jahnke, & Movshovitz-Hadar, 2002; Ma, 1999; Zaskis 

& Chernoff, 2008). According to the curriculum implemented in Turkey, students learn all the 

underlying concepts in these interview tasks (i.e., fractions, quadrilaterals, perimeter, and area 

formulas) in the fifth and sixth grades (MoNE, 2018). Thus, the tasks were designed to fall within the 

conceptual reach of the students given that the underlying concepts had already been covered in their 

education. However, the tasks could still cause cognitive conflict because both confirming and 

contradicting examples could be suggested for each statement. 

The interviews were conducted with each participant by one of the authors, and all interviews 

were video recorded. The researchers have not worked with or observed this group of students before. 

The role of the researchers was to probe students to reflect on their thoughts during the interviews. 
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During the individual interviews, the participants were presented with each mathematical task one by 

one, and they were provided enough time to work on each task. All interviews took approximately 45-

60 minutes. The participants were provided with a tablet computer, paper and pencils during the 

interviews and they were encouraged to draw figures and write down the examples, generalizations or 

justifications that they explained on the paper, or the tablet provided to them at the beginning of the 

interviews. All papers and screenshots were collected for data analysis. Various probing questions were 

employed to better conceptualize the verification processes of the participants. The examples that the 

participants constructed while verifying the presented mathematical statement consisted of some of the 

probing questions (e.g., Why do you suggest those examples?, If I ask you to suggest another example, 

what would it be?). When the participants constructed generalizations regarding the examples that they 

suggested during the interviews such as “these examples show that it [the statement] would not always 

hold true” or “if we try out the numbers up to 10, then it will continue in the same way”, the interviewer 

probed the participants by making a reference to their generalizations to achieve a deeper 

understanding of their use of examples. In addition, the arguments that the participants constructed 

were also employed as the probing questions (e.g., Would you convince your teacher with this 

argument?, Do you think that you justified your claim?).  

Data Analysis 

The data analysis began with transcribing the individual interviews and reviewing the 

participants’ responses to each mathematical statement. A constant comparative method (Glaser & 

Strauss, 1967) was utilized to illustrate the participants’ reasoning when constructing examples, 

generalizations, and justifications as follows: (1) the authors independently reviewed all the responses 

and identified the examples, generalizations, and justifications that the participants constructed during 

the interviews; (2) the authors independently coded the students’ examples, generalizations, and 

justifications using coding schemes constructed after reviewing the existing literature (Table 2); and (3) 

the authors compared their coding and identified any mismatches in their schemes, after which they 

worked together to generate new codes or adjust existing codes. 

The coding of the participants’ responses occurred in three phases. In the first phase, the 

examples constructed by the participant for each task were coded in two categories as Confirming—

when the participants suggested examples that illustrated the cases in which the task would hold true—

and Contradicting—when the participants recognized that the tasks were false and then suggested 

examples that illustrated the cases in which the task would not hold true. Later, the types of 

contradicting and conforming examples were coded according to the notion of example spaces for 

validation as described by Stylianides and Stylianides (2009) (see Table 1). For instance, Nilay stated: “I 

wanted to see if it [the statement] would be true for a quadrilateral with all sides equal, opposite sides 

equal and none of the sides equal” to explain her strategy for considering a square, a rectangle and a 

trapezoid as examples. Given that she suggested the examples that were selected based on a strategy 

and she referred to that strategy explicitly, the examples were coded as crucial experiment examples.  

In the second phase of the coding process, the participants’ generalizations identified were 

coded in two main categories as result pattern generalization and process pattern generalization and 

two subcategories for each main category as true and false. When the students recognized regularity of 

the results of the examples that they constructed with no purpose of further investigating the underlying 

structure within these examples, the generalizations were coded as result pattern generalizations. When 

the students did not only see the generality through the examples, but they also recognized and 

captured a relationship across these examples, the generalizations were coded as process pattern 

generalizations. For instance, Reyyan claimed: “If there are more even numbers than odd numbers, then 

the result would come out as an odd number or vice versa” for the mathematical statement 1. As evident 

in her statement, she not only recognized that the statement was false, but she also captured a true 

relationship across the examples she suggested previously. Thus, her generalization constituted an 

example of true process pattern generalization.  
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In the last phase of the coding process, the arguments that the participants constructed were 

coded as empirical, non-empirical and conventional based on whether a secure or non-secure method 

was employed to verify the truth of the generalization from a mathematical standpoint (see Table 2). 

For instance, Murat justified he statement [Mathematical Statement 1] as follows: “There will be three 

consecutive numbers. In this case, it is either even-odd-even or odd-even-odd. If we do odd-even-odd, 

we add two odd numbers, and it will be an even number. Then, even number and even number will 

make an even number”. Murat knew that adding odd-even-odd numbers would come out as an even 

number which would contradict the statement. His justification was not built upon using examples. Yet, 

his justification failed to provide an insight into why adding two odd numbers would come out as an 

even number. All these caused his justification to be classified as non-empirical argument.  

 Analyzes were carried out simultaneously by two researchers, and coding reliability was 

calculated, which shows coding similarities and differences. In order to obtain inter-coder reliability, 

the reliability formula specified by Miles and Huberman (1994) was employed (𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =

 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 / (𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 +  𝐷𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡) 𝑥 100). Obtaining a reliability percentage of at least 70% 

between two coders is necessary for the reliability of data analysis process (Yıldırım & Şimşek, 2006). In 

this study, the coding reliability percentage was found to be 0.94. The coders were in complete 

agreement about whether students proposed confirming and contradicting examples for the statements, 

or whether the generalizations they proposed were true or false. They differed only in a few cases on 

the types of contradicting examples that the students suggested. For example, Murat stated: “…There 

will be three consecutive numbers. In this case, it is either even-odd-even or odd-even-odd. If we do 

odd-even-odd, we add two odd numbers, which will be an even number. Then, we add an even number 

to an even number. Let's say these numbers are 1,2,3. Adding 1 to 3 is 4, and then adding 2 to the sum 

will be 6, which is an even number. That's why I say wrong!” One of the researchers coded the student's 

proposed examples as crucial experiment examples, on the grounds that the student chose the examples 

strategically. However, the other researcher stated that the student used examples as a tool to clarify the 

general idea and moreover suggested a way to construct example clusters. Thus, the examples 

suggested by Murat in this case should be considered as conventional examples. The discussions 

continued until a full consensus was reached, and Murat was included in the conventional example 

column as a result (see Table 3).  

Findings 

In this section, the types of examples and generalizations that students constructed for each 

mathematical statement will be shared first and then, the types of arguments constructed by the 

students for their generalizations will be documented. Later, the relationships between the examples 

suggested by the students and the generalizations and arguments that they constructed will be focused.  

The Types of Examples and Generalizations Constructed by the Students  

Table 3 below displays the example and generalization types constructed by the students for 

the first mathematical statement. As can be seen in the table, all students were able to come up with 

both confirming and contradicting examples for the statement and then to conclude that the statement 

was false. Although all students were able to recognize that the statement would not always hold true, 

not all students were able to generalize regarding the domain of the statement correctly. Given that the 

students were not limited to construct only one generalization, one student, Reyyan, constructed a true 

and false process pattern generalization based on the examples constructed. 
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Table 3. The Types of Examples and Generalizations Constructed for Mathematical Statement 1 

Confirming Example Contradicting Example True Result 

Pattern 

Generalization 

True Process 

Pattern 

Generalization 

False Process 

Pattern 

Generalization 
N.E. C.E. C. N.E. C.E. C. 

Binnur Demet Kemal Binnur Demet Kemal Demet Demet Reyyan 

Ceylin Reyyan Melike Ceylin Reyyan Melike  Murat Murat  

  Nilay   Murat Melike Melike  

  Murat   Nilay Nilay  Nilay  

      Reyyan Reyyan  

      Kemal  Kemal  

      Binnur   

      Ceylin   

Note. N.E stands for Naive Empirical Example, C.E. stands for Crucial Experiment Example and C stands for 

Conventional Example 

Two students, Binnur and Ceylin, constructed both confirming and contradicting examples for 

the first statement. However, both students did not see the generality into the specific examples and 

could not capture common elements across cases. The examples proposed by these students rather 

seemed randomly chosen. These two students were able to conclude that the statement was false after 

constructing a contradicting example. Yet, they had no purpose of further investigating in which cases 

the statement would hold true. 

Binnur: I tried out some examples. When I add 1,2,3, the sum is 6. So, it is a false statement!  

Interviewer: If I ask you to suggest another example, what would it be? 

Binnur: For instance, we could add 4,5,6. The sum would be 15. When we add 1,2,3, it becomes 

6, but when we add 4,5,6, it becomes 15. But it's still wrong.  

In the excerpt above, Binnur was able to suggest valid contradicting and confirming examples. 

Yet, she had no purpose of further investigating common elements in these examples. Rather, she 

provided the examples of 1, 2, 3, which seemed randomly chosen, and refuted the statement right after 

encountering the contradicting examples by stating: “…So, it is a false statement!”. Not attempting to 

investigate the common elements among the examples nor selecting examples strategically constituted 

the reasons of why the examples were coded as naive empirical examples. Ceylin acted similarly.  

Murat suggested the same examples—1, 2, 3. However, he used the examples to illustrate the 

process pattern he recognized. He stated: “…There will be three consecutive numbers. In this case, it is 

either even-odd-even or odd-even-odd. If we do odd-even-odd, we add two odd numbers, which will 

be an even number. Then, we add an even number to an even number. Let's say these numbers are 1,2,3. 

Adding 1 to 3 is 4, and then adding 2 to the sum will be 6, which is an even number. That's why I say 

wrong!” As evident in his statement, Murat construed a more general idea and used the examples only 

as a tool to describe this idea. His statement: “… Let’s say these numbers are 1, 2, 3. Adding 1 to 3 is 4, 

and then adding 2 to the sum will be 6” demonstrates that he construed the general idea ( If we do odd-

even-odd, we add two odd numbers, which will make an even number) first and then tried to illuminate 

his idea by using these specific examples and adding these numbers in this specific order. Murat not 

only suggested confirming and contradicting examples, but he also demonstrated a way of constructing 

clusters of examples. Thus, his examples represented conventional examples in this case.  

Demet: I think it is false, because 0,1, 2 are consecutive numbers but no, it did not happen! The 

sum is 3 and it is an odd number. 1, 2, 3 are consecutive numbers but the sum of these three 

numbers is 6. It is not an odd number. 6 is an even number. It says the sum is an odd number. 

That’s why I said it is false!  

Interviewer: Why did you choose these examples? 

Demet: I wanted to start from the beginning. That’s why I started with 0.  
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As can be seen above, Demet thought that the statement would be false from the start and 

attempted to demonstrate this idea with an example which she thought would be a contradicting 

example. Yet, she confronted a cognitive conflict when the example she suggested served as a 

confirming example: “I think it is false, because 0, 1, 2 are consecutive numbers but no, it did not happen! 

The sum is 3 and it is an odd number.” After confronting a cognitive conflict, she tended to suggest 

another example —1, 2, 3— and she concluded that the statement was false. Demet stated that she chose 

0, 1, 2 since she wanted to start with the number 0 purposefully, which is why the examples she 

suggested were classified as crucial experiment examples. Reyyan was the other student who chose the 

examples she provided based on a strategy.  

Reyyan: I tried out some of the consecutive numbers in my mind and the result came out mostly 

an odd number. But I tried 5, 6, 7 and the sum was 18. 18 is an even number, so it is false! 

Interviewer: Why did you pick those numbers out? 

Reyyan: I always try to do the numbers up to 10. Because the numbers will continue based on 

the number 10. Later, it will continue as 11, 12, 13. So if we try out the numbers up to 10, then 

it will continue in the same way. 

Reyyan claimed that since the last digit of a number would always be from 0 to 9, it would 

suffice to check out the sum of three consecutive numbers up to ten. She argued that the same pattern 

would continue for bigger numbers. Reyyan’s effort of checking out the numbers up to ten constituted 

her strategy while suggesting examples for the statement (coded as crucial experiment examples). Later 

when asked why adding two odd numbers makes an even number, she stated: “For instance, 1 and 3 

make 4. 3 and 5 add up to 8 or 5 and 7 add up to 12. It will continue like this. We look at the last digit in 

bigger numbers. Last digit will always be 1, 2, 3, 4, 5, 6, 7, 8, 9 or 0. Two odd numbers should always 

make an even number.” The last digit generalization constructed by Reyyan would indeed be valid 

while adding two odd numbers and/or identifying odd and even numbers; however, Reyyan was not 

able to construct a structural relationship among her strategy with the statement [Mathematical 

Statement 1]. Rather she simply generalized that the last digits would always be the same in each 

number without making it apparent why and how this generalization could be applicable. Furthermore, 

the last digit strategy would not be useful to identify whether adding three consecutive numbers would 

result in odd or even number. Reyyan should have based her strategy off of the number of even or odd 

numbers instead. Thus, her last digit generalization was coded as false process pattern generalization. 

Later, Reyyan was able to reach a generalization which was coded as true process pattern generalization 

by further analyzing the structural relationships among the examples she suggested as evident in her 

following statement: “If there are more odd numbers then the result will come out as an even number 

or vice versa.” 

The students further struggle with deciding whether the second statement would always hold 

true. Table 4 demonstrates the results regarding the responses to the mathematical statement 2 

cumulatively below.  

Table 4. The Types of Examples and Generalizations Constructed for Mathematical Statement 2 

Confirming Example Contradicting Example True Result 

Pattern 

Generalization 

True Process 

Pattern 

Generalization 

False Process 

Pattern 

Generalization 
N.E. C.E. C. N.E. C.E. C. 

Demet Melike Kemal Binnur Demet - Kemal Kemal Kemal 

Binnur Murat  Nilay Kemal  Melike  Melike 

Nilay   Reyyan Melike  Nilay  Nilay 

Ceylin    Ceylin  Ceylin  Ceylin 

Reyyan    Murat  Reyyan  Reyyan 

      Binnur   

      Demet   

      Murat   
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Most students struggled with determining when the second statement would hold true and 

failed to capture common elements across cases correctly, which resulted in a false process pattern 

generalization as evident in Table 4 above. 

Ceylin: I chose a proper and an improper fraction to show that this [the statement] is false. I 

chose one proper and one improper fraction of the same denominator. For instance, let these 

fractions be 2/5 and 7/5. The difference between the nominator and denominator in 2/5 is 3 and 

the difference is 2 in 7/5. The smaller difference in this case is in 7/5 and it is bigger. This supports 

the statement! But I wanted to find a case that did not support it [the statement]. Let it be 2/1, 

or 2/3 and 9/3, let’s try these out. The difference between the nominator and denominator in 2/3 

is 1 and 6 in 9/3. So, the smaller difference is in 2/3 but 9/3 is bigger than 2/3. This now makes 

it false. So, I think the statement is not always true.  

Ceylin argued that the statement was false in the cases of comparing one proper and one 

improper fraction of the same denominator. Although she encountered a contradicting example (the 

fractions of 2/5 and 7/5) that caused a cognitive conflict, she dismissed the example and tried to find out 

a confirming example instead. Other students showed a similar tendency of generalizing incorrectly by 

arguing that the statement would be false for improper fractions. For instance, Melike stated: “The 

statement would be true for comparing proper fractions, but it would be opposite if the fractions were 

improper fractions.” 

Kemal, on the other hand, was the only student who correctly investigated in which cases the 

statement held true. He stated: “It [the statement] could be true or false for proper fractions. But if two 

fractions that we compare have the same denominator and they both are proper fractions then the 

statement would be true. Let’s say it is 2/10 and the other is 9/10. It would always be true for the fractions 

of the same denominator. The reason is that the difference between the nominator and denominator is 

smaller. Then, it means that the fraction is close to a whole and it would be bigger.”  

It was observed that all students proposed examples that either contradicted or confirmed the 

statement. However, one of the findings of the study is that not all students were able to successfully 

identify the structural relationships between the examples they suggested. Although the participants 

concluded that the statement was not always true after encountering a contradicted, they failed to 

determine under which conditions the statement would be true or false. 

Table 5. The Types of Examples and Generalizations Constructed for Mathematical Statement 3 

Confirming Example Contradicting Example True Result 

Pattern 

Generalization 

True Process 

Pattern 

Generalization 

False Process 

Pattern 

Generalization 
N.E. C.E. C. N.E. C.E. C. 

Demet Nilay Kemal Demet Nilay Kemal Kemal Kemal Demet 

Binnur  Melike Binnur  Melike Melike Melike Nilay 

Ceylin  Murat Ceylin  Murat Nilay Murat  

Reyyan   Reyyan   Reyyan   

      Ceylin   

      Binnur   

      Demet   

      Murat   
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All students were able to suggest examples that contradicted or confirmed mathematical 

statement 3. However, not all students determined the structural relationships among these examples 

successfully. As a result, while all students successfully concluded that statement 3 was false after 

confronting a contradicting example, most of the students failed to determine the structural pattern 

among the cases in which the statements would hold true. Two students—Demet and Nilay— for 

instance stated a relationship which was erroneous. Nilay stated: “It is not correct! It is true for a square 

and a rectangle, but not true for a trapezoid…I wanted to see if it [the statement] would be true for a 

quadrilateral with all sides equal, opposite sides equal and none of the sides equal… whether this 

statement is true depends on the side lengths of the quadrilaterals. If the corresponding sides are 

proportional, then it is true!” Nilay chose the examples she considered strategically (crucial examples) 

and reached a false generalization by arguing that the statement would be true if the side lengths of the 

quadrilaterals were proportional. When asked why the areas of the two triangles formed by a diagonal 

in a trapezoid would be different, Nilay answered: “The angles are different [pointing to the 

corresponding interior angles of the triangles] and the sides are not proportional.” She regarded the 

situations of similarity as a determining condition for the statement. Unlike Nilay, Kemal considered 

triangle congruency and area formula of triangles in acquiring triangles of the same area.  

Kemal: At least one diagonal of a quadrilateral could cut it into two triangles with the same area 

in regular quadrilaterals. But it didn't say regular quadrilateral here. For example, the shape I 

just drew was not a regular quadrilateral and it [the diagonal] did not split the area in half. The 

area of a triangle is half of the base times height. The bases of the triangles [referring to the 

triangles constructed by the diagonal in Figure 2] are the diagonal here, but the heights are 

different so are the areas. 

 
Figure 2. A contradicting example constructed by Kemal for the mathematical statement 3 

Kemal further explained what he meant by regular quadrilaterals by saying: “…. In these 

quadrilaterals [regular quadrilaterals], the triangles are the same, the sides of them are the same so are 

the areas.” Kemal named the quadrilaterals in which diagonals cut the quadrilateral into two congruent 

triangles as regular quadrilaterals such as a rectangle, a square or a parallelogram. Then, he generalized 

that the areas of the triangles formed by a diagonal of the quadrilateral to which he referred as regular 

quadrilateral should be the same given that the triangles would be congruent. Although his definition 

of a regular quadrilateral was erroneous, his generalization that he based off of triangle congruency 

held true.  

Most students struggled to determine whether the presented mathematical statement would 

hold true as evident in Table 6. Kemal, Melike and Binnur were the only students who correctly 

concluded that there would not always be a constant relationship between the perimeter and area of a 

rectangle. 
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Table 6. The Types of Examples and Generalizations Constructed for Mathematical Statement 4 

Confirming 

Example 

Contradicting 

Example 

True Result 

Pattern 

Generalization 

False Result 

Pattern 

Generalization 

True Process 

Pattern 

Generalization 

False Process 

Pattern 

Generalization N.E. C.E. C. N.E. C.E. C. 

Demet - Kemal - Melike Kemal Kemal Demet Kemal Demet 

Nilay      Melike Nilay Binnur Nilay 

Ceylin      Binnur Ceylin   Ceylin 

Murat       Murat  Reyyan 

Reyyan       Reyyan   

Melike          

Binnur          

Among these three students, Kemal and Binnur were also able to construct a true generalization 

regarding when the statement would be false. Binnur claimed: “If both sides of a rectangle get increased 

so does its area. But if one side of the rectangle is decreased, then the statement might be false, that is, 

the area might decrease as a result.” Although Binnur was correct about her claim, her claim was 

dissociated from formal analysis and, as a result, solely remained based on her intuition. She attempted 

to construct a contradicting example by stating: “Let’s say the length is 10 cm and the width is 5 cm. If 

we decrease the length by 2 cm or let’s say it will be decreased by 7 cm, then the length will be 3 cm. 

The width will increase and be 7 cm, and its area will change”. However, the example she suggested 

served as a confirming example instead. Binnur did not attempt to perform formal mathematical 

analysis, nor did she attempt to suggest a contradicting example. Rather, her intuition seemed self-

evident to her, and she was very confident that her intuition was true.  

Kemal constructed a true generalization as follows: “… it is wrong. Here's the thing. When one 

side length is the same in two rectangles, the other side length of the rectangle should be increased in 

measurement to get the perimeter increased. In this case, it is true. But if we decrease one of the sides, 

then it might not always hold true. So, for example, let’s say the sides of a rectangle would be 3 and 2. 

If I increase one side and make it a 5 and decrease the other side, let’s make it 1, the perimeter would be 

increased, but the area would decrease.” 

 
Figure 3. A contradicting example constructed by Kemal for the mathematical statement 4 

Most students argued that there is a constant relationship between the two measures, which 

resulted in a false generalization for mathematical statement 4. For instance, Nilay stated: “Perimeter of 

a rectangle is the sum of all four sides. In this case, when perimeter increases, the side lengths should 

also increase. The multiplication of two side lengths of a rectangle gives us the area of the rectangle. 

Since the side lengths increase so does the area.” Nilay, like the other students, proposed a false 

generalization and justified her generalization based on what Stavy and Tirosh (1996) refer to as “the 

intuitive rule: More A- More B”. Although this generalization might hold true for the case of increasing 

both or only one pair of opposite sides of a rectangle, it does not hold true all the time (see Figure 3).  
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The Types of Arguments Constructed by the Students  

Table 7 below displays all types of arguments constructed by the students cumulatively. As can 

be seen in the table, the students struggled with constructing arguments to justify their generalizations. 

They either constructed no argument or constructed arguments that deviated from being a general 

mathematical argument.  

Table 7. Types of Arguments Constructed by the Students 

 
No Argument False Argument 

Empirical 

Argument 

Non-Empirical 

Argument 

Conventional 

Argument 

M.S.1 Melike  Demet Murat  

Binnur  Reyyan Kemal  

Nilay     

Ceylin     

M.S.2 Melike    Kemal 

Binnur     

Ceylin     

Nilay     

Demet     

Murat     

Reyyan     

M.S.3 Ceylin Nilay Demet Murat Kemal 

  Binnur  Melike 

  Reyyan   

M.S.4 Binnur Demet Melike  Kemal 

 Nilay    

 Ceylin    

 Reyyan    

 Murat    

Note. M.S. stands for Mathematical Statement 

For mathematical statement 3, Demet correctly concluded that the statement would not always 

hold true for all quadrilaterals and was able to construct a valid contradicting example as in Figure 4. 

Yet, she did not know how to justify that none of the diagonals of the quadrilateral she drew would cut 

the quadrilateral in two triangles of the same area. 

 
Figure 4. A contradicting example constructed by Demet for the mathematical statement 3 

Demet: For instance, we could check the side lengths of the triangles. We could only be certain 

if we measure the lengths of the sides or know the side lengths. The triangles in this shape 

[referring to the quadrilateral in Figure 4] will look different, one will look smaller, and the other 

one will look bigger. We cannot be sure right now without any measurement results. 

Demet argued that without knowing the side lengths of the triangles, whether the areas were 

the same could not be justified. Demet’s tendency to rely on the measurement results (i.e. side lengths) 

to justify her generalization was classified as empirical argument. Melike, on the other hand, 
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constructed an argument based on the area formula of a triangle to justify her generalization, which was 

classified as conventional argument.  

Melike: This statement would be true for regular quadrilaterals but would be false for irregular 

ones. Since in a regular quadrilateral one diagonal cuts the quadrilateral in two congruent 

triangles but it might not happen in irregular ones. For instance, I drew a general quadrilateral 

like this, and the sides and the angles are different. It would not hold true for it.  

 
Figure 5. A contradicting example constructed by Melike for the mathematical statement 3 

Interviewer: How would you justify that? 

Melike: The heights of these triangles would be different, but the bases are the same, the diagonal. 

Thus, the areas would be different in this case.  

Whether there is a relationship between the types of examples and generalizations constructed 

by the students with the types of arguments will be addressed next.  

The Relationship Between the Types of Examples with the Types of Generalizations and 

Arguments Constructed by the Students  

The results of this study demonstrated that the students were successful at suggesting 

contradicting examples for most of the statements and reaching the generalization of the sameness in 

the results of these examples (coded as result pattern generalization). However, the students were not 

as successful at reaching process generalizations and constructing mathematical arguments (see Table 

3, 4, 5, 6 and 7). We hypothesized that the types of examples that the students construct to verify the 

statements could inform the types of generalizations and arguments constructed by the students. The 

findings of this study supported this hypothesis by demonstrating that the students who suggested the 

types of examples coded as crucial experiment and conventional examples were more successful at 

generating process pattern generalizations and constructing non-empirical and conventional 

arguments. On the contrary, the students who suggested examples that were randomly selected (coded 

as naive empirical examples) struggled to identify the structural relationships among the examples and 

to construct arguments. To better demonstrate the link between the types of examples and the 

generalizations and/or arguments constructed by the students, the cases of Binnur and Kemal would be 

described more in depth in the following section. 

Table 8. Types of Examples, Generalization, Argument Constructed by Binnur 

 
Confirming 

Examples 

Contradicting 

Examples 

Result Pattern 

Generalization 

Process Pattern 

Generalization 
Argument 

M.S.1 N.E. N.E. True - No argument 

M.S.2 N.E. N.E. True - No argument 

M.S.3 N.E. N.E. True - No argument 

M.S.4 N.E. N.E. True True No argument 

Table 8 displayed that Binnur suggested examples that were coded as naive examples for the 

mathematical statements. Table 8 also displayed that while Binnur constructed true result pattern 

generalizations, she could not construe process pattern generalizations except the last mathematical 

statement. That is, Binnur was successful at the process of constructing a generalization by looking at 
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several cases and identifying the sameness of the results among these cases. However, the 

generalizations in the eyes of her occurred by not dwelling in the particularities of the examples 

suggested. When it comes to constructing arguments, as can be seen in Table 8, Binnur failed to construct 

an argument at all.  

Table 9. Types of Examples, Generalization, Argument Constructed by Kemal 

 Confirming 

Examples 

Contradicting 

Examples 

Result Pattern 

Generalization 

Process Pattern 

Generalization 
Argument 

M.S.1 C. C. True True Non-empirical  

M.S.2 C. C.E. True True + False Conventional  

M.S.3 C. C. True True Conventional  

M.S.4 C. C. True True Conventional 

Kemal, on the other hand, suggested mostly conventional examples and he was more successful 

to reach process pattern generalizations and to construct arguments coded as conventional arguments. 

All these results of the students will be discussed under the lights of the current literature in the 

following part.  

Discussion 

This paper investigated the types of reasoning that mathematically gifted students employed 

when faced with mathematical statements for which both conforming and contradicting examples could 

be suggested. It was hypothesized that the statements that contained both contradicting and confirming 

examples could constitute a productive venue to investigate the attempts that go beyond suggesting a 

counterexample. Thus, the purpose of this study was twofold: (1) investigating the examples, 

generalizations, and justifications constructed by the students while verifying the correctness of 

mathematical statements for which both confirming and contradicting examples could be suggested 

and (2) investigating whether there was a relationship between the examples suggested by the students 

and their generalizations and arguments. 

Researchers suggest that employing patterns that do not always hold true could be essential for 

teaching students to recognize the limitations of empirical arguments as a valid way of proving (e.g., 

Ball et al., 2002). This study showed that employing such patterns could also be essential for teaching 

students to construct various types of examples, investigate the structural relationships between 

examples, and construct generalizations and arguments. The mathematical statements provided a 

productive venue for the participating students to construct various types of examples, generalizations, 

and arguments. Thus, such statements could be efficient for implementing recommendations for 

creating mathematics classrooms in which students explore, construct, or refine mathematical 

conjectures and use a variety of reasoning to justify or disprove them (CCSSM, 2010; NCTM, 2000). 

Many researchers have advocated for classroom environments in which students can engage in such 

activities as rich learning opportunities that mathematically gifted students require to meet their 

intellectual needs (Berg & McDonald, 2018; Leikin, 2021; Sriraman, 2004). Some might argue that 

constructing various types of examples, generalizations, or arguments might not be detected if these 

tasks were implemented by a different group of participating students. Although these concerns are 

important and the results of this study cannot be generalized to all students, such mathematical tasks 

could still serve as a rich learning opportunity to foster students’ mathematical thinking and reasoning 

skills. 
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Employing counterexamples as an instructional tool to create cognitive conflict to achieve 

conceptual change has been widely adopted (Gal, 2019; Zaskis & Chernoff, 2008). Zaskis and Chernoff 

(2008) demonstrated that the convincing power of different types of counterexamples when creating 

and confronting cognitive conflict can vary. This study showed that encountering a contradicting 

example did not always result in the students confronting a cognitive conflict or creating a conceptual 

change. For instance, when Ceylin encountered a contradicting example for her generalization 

regarding mathematical statement 2, she said: “This [the examples she suggested] supports the 

statement! But I wanted to find a case that did not support it [the statement]. Let it be 2/1, or 2/3 and 9/3, 

let’s try these out!” The examples Ceylin suggested as contradictions confirmed the statement. 

However, Ceylin attempted to suggest other examples that supported her initial claim instead of 

abandoning or modifying it. Similarly, Binnur generalized that “if one side of the rectangle is decreased, 

then the statement might be false, that is, the area might decrease as a result.” Binnur attempted to 

suggest an example to confirm her generalization by stating: “Let’s say the length is 10 cm and the width 

is 5 cm. If we decrease the length by 2 cm or let’s say it will be decreased by 7 cm, then the length will 

be 3 cm. The width will increase and be 7 cm, and its area will change.” However, the example she 

suggested contradicted her claim. The conflicts that emerged from the unexpected results of Ceylin and 

Binnur’s suggested examples thus did not serve as a bridge to a mathematically sound claim (Zaskis & 

Chernoff, 2008). When looking at the examples they suggested for the mathematical statements, they 

were usually randomly selected most of the time (coded as naive examples). Gal has indicated various 

parameters, such as difficulties with formal reasoning or a poor understanding of conceptual data, as 

reasons students may not confront or resolve a cognitive conflict in the ways envisioned by educators 

(2019, p. 241). Further analyzing the participating students’ examples, the students’ behavior while 

suggesting examples or confronting/resolving a cognitive conflict was similar. Both Ceylin and Binnur 

disregarded the examples they had suggested rather than abandoning and/or modifying either their 

claims or the examples. In other words, they did not show any tendency toward further analyzing the 

underlying reasons for the unexpected results. Similarly, they demonstrated a lack of intellectual 

curiosity while selecting examples for verifying or supporting their claims. Hadamard (1945) has called 

the ability to discern or to choose “mathematical creativity.” The participating students who thought 

more rigorously while choosing examples could thus be referred to as more creative. Thus, 

mathematical creativity could be counted as an important parameter for confronting or resolving a 

cognitive conflict. 

The findings of this study demonstrated that intuition also plays an essential role in confronting 

or resolving cognitive conflict. Ben-Zeev and Star described intuition from a classical intuitionist 

perspective as “the answer becomes self-evident immediately” (2001, p. 5). For mathematical statement 

4, 5 students—Demet, Nilay, Ceylin, Reyyan, and Murat—generalized that a constant relationship 

between the perimeter and the area of a rectangle, so that if the perimeter of a rectangle increases, so 

does its area. Stavy and Tirosh (1996) labeled this intuitive rule “More A–More B.” Nilay reasoned: “The 

multiplication of two side lengths of a rectangle gives us the area of the rectangle. Since the side lengths 

increase, so does the area.” Nilay, like the other four students, constructed her argument for her false 

process pattern generalizations based on this intuitive “More A–More B” rule. Thus, it would not be 

wrong to state that intuition also plays an essential role in constructing arguments and should be 

considered a parameter for students’ tendency to respond inconsistently to mathematical tasks. 

Although Yopp (2015) would regard such responses as problematic, false arguments constitute an 

essential aspect of students’ mathematical reasoning. Péter-Szarka (2012) has argued that false 

responses indicate learners’ mathematical reasoning skills and constitute an essential part of their 

reasoning. 

  



Education and Science 2025, Vol 50, No 222, 45-66 Z. Zeybek Şimşek & E. Kılıçoğlu 

 

62 

The findings also demonstrated that the role of the different examples mattered in the students’ 

generalization acts. The students mostly construed true result pattern generalizations for mathematical 

statements. That is, they were able to conclude that the statements were false when faced with 

contradicting examples. However, the students who constructed conventional examples were able to 

construe not only result pattern generalizations but also process pattern generalizations. That is, those 

who employed conventional examples while verifying the correctness of the mathematical statements 

were more successful at unpacking the statement condition. For instance, Kemal generalized that 

Mathematical Statement 2 “would always be true for the fractions of the same denominator. The reason 

is that the difference between the nominator and denominator is smaller. Then, it means that the fraction 

is close to a whole and it would be bigger.” The examples chosen were informative regarding students’ 

generalization acts and the types of generalization they constructed. During the mental processes of 

constructing examples, especially those coded as conventional examples, many associated processes 

were brought into play. Thus, the examples suggested by the students not only illuminated their 

cognitive processes but also the generalization types that they constructed. The mathematical practice 

of “look for and make use of structure” (CCSSM, 2010, p. 8) was more evident when the students 

constructed conventional examples. 

Stylianides and Stylianides (2009) posited that students’ justification schemes reflect their 

example spaces for validation. The findings of this study demonstrated that the types of examples 

suggested by the students were also informative regarding students’ justification schemes along with 

the types of generalization. That is, all participating students were able to suggest valid contradicting 

examples for the mathematical statements (except for the last mathematical statement) and to conclude 

that the statements were false. However, not all students were able to see the common elements or to 

identify the structural relationships among these examples and nor were they able to refine the original 

mathematical statements. As a result, not all students successfully constructed valid mathematical 

arguments for their generalizations (see Table 7). For instance, Ceylin and Binnur mostly suggested 

examples coded as naive examples while verifying the presented mathematical statements and they 

were less successful at constructing arguments for their generalizations. On the contrary, the students 

who employed mostly conventional examples while verifying mathematical statements were more 

successful at constructing non empirical and conventional arguments. Given that justifying is a very 

demanding task, and it is influenced by different parameters such as knowledge of argumentation 

(Harel & Sowder, 1998; Stylianides & Stylianides, 2009) and skill with the mathematics register (Epp, 

2003; Mata-Pereira & da Ponte, 2017), we believe that it is important to know the informative factors 

regarding students’ justification behaviors. 
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Suggestions 

The purpose of this study was to address the ways in which mathematically gifted students 

reason when faced with both confirming and contradicting examples for a mathematical statement. It 

was hypothesized in the study that the statements in which both confirming and contradicting examples 

could be suggested might cause cognitive conflict and support intellectual curiosity of the students to 

propose various examples, generalizations and justifications, the types of attempts to go beyond solely 

proposing a counterexample. The findings of the study demonstrated that employing such 

mathematical statements was indeed essential to get the students to construct various types of examples, 

to investigate the structural relationships between the examples, and to construct generalizations and 

arguments. This study was conducted with eight mathematically gifted students which could also serve 

as a limitation. Therefore, it could be suggested to conduct the study with different groups (i.e. students 

with different academic achievements) and in different settings (i.e. small group interviews) to see 

whether mathematical statements that contain both confirming and contradicting examples could foster 

students’ example, generalizations and justification construction processes.  

The findings of this study also demonstrated that the participants dealt with cognitive conflict 

caused by encountering a counterexample differently. For instance, Ceylin and Binnur chose to ignore 

the counterexample while Kemal investigated further to understand why the examples contradicted the 

statement. Studies nominated various factors including difficulties with formal reasoning, lack of 

intuition or poor understanding of the data for not confronting a cognitive conflict or resolving the 

conflict as envisioned by educators. We believe that lacking a good understanding of the concepts 

involved in the statements might also hinder students' processes of confronting a cognitive conflict. 

However, investigating the effects of content knowledge on the ways of dealing with cognitive conflict 

was beyond the scope of this study since the data collected would fall short of making such claims. 

Thus, it could be suggested to conduct studies to further delve into this issue.  

Furthermore, the findings of this study demonstrated that the types of examples suggested by 

the students were informative regarding students’ justification schemes along with the types of 

generalization. Thus, it could be suggested that the types of examples constructed by learners should 

be considered as an instructional and/or research tool to promote as well as to analyze students’ 

justification schemes. 
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